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A B S T R A C T   

Adverse outcome pathways provide a powerful tool for understanding the biological signaling cascades that lead 
to disease outcomes following toxicity. The framework outlines downstream responses known as key events, 
culminating in a clinically significant adverse outcome as a final result of the toxic exposure. Here we use the 
AOP framework combined with artificial intelligence methods to gain novel insights into genetic mechanisms 
that underlie toxicity-mediated adverse health outcomes. Specifically, we focus on liver cancer as a case study 
with diverse underlying mechanisms that are clinically significant. Our approach uses two complementary AI 
techniques: Generative modeling via automated machine learning and genetic algorithms, and graph machine 
learning. We used data from the US Environmental Protection Agency’s Adverse Outcome Pathway Database 
(AOP-DB; aopdb.epa.gov) and the UK Biobank’s genetic data repository. We use the AOP-DB to extract disease- 
specific AOPs and build graph neural networks used in our final analyses. We use the UK Biobank to retrieve real- 
world genotype and phenotype data, where genotypes are based on single nucleotide polymorphism data 
extracted from the AOP-DB, and phenotypes are case/control cohorts for the disease of interest (liver cancer) 
corresponding to those adverse outcome pathways. We also use propensity score matching to appropriately 
sample based on important covariates (demographics, comorbidities, and social deprivation indices) and to 
balance the case and control populations in our machine language training/testing datasets. Finally, we describe 
a novel putative risk factor for LC that depends on genetic variation in both the aryl-hydrocarbon receptor (AHR) 
and ATP binding cassette subfamily B member 11 (ABCB11) genes.   

1. Introduction 

Informatics and computational methods have revolutionized 
biomedical research and enabled scientists to explore questions that are 
either infeasible or impossible through traditional experimentation 
alone [32]. In environmental health and toxicology, common 

computational tasks include building and training models that predict 
various chemical properties, conducting statistical analysis of observa-
tional and epidemiological data to better understand exposure-related 
health outcomes, and performing network analyses to discover key 
processes in biochemical pathways, among others [17,38]. Despite the 
successes made using these methods, some key deficiencies have become 
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apparent in toxicological research, such as a lack of richly structured, 
multimodal biomedical data describing chemicals and the biological 
systems that respond to chemical exposure [31] and a paucity of novel 
methods for discovering new knowledge from these complex data re-
sources [36]. In this paper, we employ both to gain new insights into a 
phenomenon of growing interest: the influence of genetics on suscepti-
bility to an adverse outcome following specific chemical exposures. 

Adverse Outcome Pathways (AOPs) are pathway-like descriptions 
that outline the mechanistic associations between molecular exposure 
events and higher-order clinical and population-level outcomes that 
may arise from the exposure [2,26]. AOPs consist of molecular initiating 
events (MIEs), key events (KEs), and adverse outcomes (AOs). By defi-
nition, a KE is any internal step within an AOP at some level of biological 
organization, and an MIE is a particular kind of KE that both initiates an 
AOP and is comprised of a molecular interaction between a toxicant and 
a body component. AOPs are classified according to their respective 
health outcomes, and AOPs associated with similar outcomes often 
overlap to create an ‘AOP network.’ An AOP’s set of KEs can include 
genetic polymorphisms that are associated with higher risk to the 
adverse outcome. For example, colon cancer AOPs include 53 unique 
SNP associations originally derived from GWAS [37]. This study will 
attempt to look at the influence genetic phenomena have on suscepti-
bility to adverse outcomes after specific chemical exposures using AOPs 
as a framework for reference. 

Methodologically, one area in particular that has experienced rapid 
growth, and holds great promise in all areas of biomedicine, is artificial 
intelligence (AI). AI broadly aims to construct computational systems 
that make intelligent decisions based on available data, knowledge, 
and/or human input. The scope of what comprises AI is broad, and 
usually nebulously defined. In this paper, we explore two areas within 
AI: Evolutionary algorithms and graph data science. Evolutionary al-
gorithms are a family of algorithms that imitate processes found in 
biological evolution to optimize a system (e.g., a predictive model, a 
symbolic mathematical equation, or even another algorithm). Unsur-
prisingly, evolutionary computation is often used in computational 
biology, for example, in the context of simulating natural systems or 
processes [10,11,22] and building machine learning classifiers that 
perform well on a specific task [16,23,28]. Graph data science refers to 
the quantitative analysis of graphs – sometimes known as networks (e.g., 
biological networks), and comprised of a set of nodes connected by a set 
of edges that define relationships between those nodes [7,27]. Some 
tasks within graph data science involve community detection [9], 
identification of the shortest paths linking two nodes in a graph [12], 
determining ‘hub nodes’ that play critical roles in the global structure of 
a graph [7,41], and using computational algorithms that yield quanti-
tative understandings of the behavior and characteristics of a given 
graph [1,15]. Since AOPs can be represented as graphs, graph data 
science provides a powerful set of tools for discovering properties of 
AOPs that are not obvious through manual inspection. 

Here, we propose a novel approach to gain understanding of the 
mechanisms underlying genetic influences on toxic adverse outcomes, 
without the inclusion of associated case-control information, that le-
verages these two areas of AI, and subsequently evaluates the approach 
in the context of toxicity-mediated adverse outcome pathways involved 
in liver cancer (LC). Briefly, we train interpretable generative models to 
construct synthetic datasets resembling real-world LC AOP genotype 
data via the HIBACHI software, and introspect the best models produced 
by HIBACHI (Heuristic Identification of Biological Architectures for 
simulating Complex Hierarchical genetic Interactions) for the most 
prominent AOP SNPs that influence LC outcomes. HIBACHI is a com-
mand line utility based on genetic programming (GP) that generates 
(synthetic) datasets with interactions between input features [24,25]. It 
uses the (μ + λ) evolutionary algorithm [6] to construct trees of primi-
tive mathematical operations that can represent interactions between 
independent variables. For example, when applied to genetic data, these 
feature interactions may represent epistasis or mechanisms underlying 

polygenic traits. HIBACHI can take an existing dataset – referred to in 
the context of GP as a model – as input, which is then used to evaluate the 
fitness of candidate output datasets. Our hypothesis is that HIBACHI can 
create synthetic datasets of SNPs involved in AOPs that behave the same 
as real data for the same AOPs. This will allow us to explore the inter-
pretable generative models used to create the synthetic data, which 
gives insights into interactions between specific features in the real data 
used to train HIBACHI. Conceptually, this process can be likened to a 
brute-force version of symbolic regression [18] that avoids pitfalls 
arising from statistical analyses on genetic data with complex in-
teractions between features [40]. Importantly, this approach utilizes 
genomic and phenotypic data from real-world populations, combined 
with information and knowledge sourced from publicly available, open 
access databases describing mechanisms of toxicity. Our methods are 
generalizable to other diseases of interest and provide a new framework 
for toxicologists to explore genetic mechanisms that underlie toxic 
adverse outcome susceptibility. 

2. Methods 

2.1. Data sources 

Our analysis uses data from the US Environmental Protection 
Agency’s Adverse Outcome Pathway Database (AOP-DB) and the UK 
Biobank (UKBB). The AOP-DB provides a formal structure for AOPs and 
their contained key events, as well as the relationships and associations 
between key events, genes (and their variants), metabolic pathways, 
diseases, and other relationships of toxicological interest. Data in the 
AOP-DB are aggregated from third-party public databases, including 
automated data pulls from the AOP-Wiki [26], as part of the OECD- 
supported EAGMST AOP-KB sub-group effort. 

The UKBB is a large collection of longitudinal genetic, clinical, and 
demographic data on more than 500,000 adult volunteers in the UK, and 
is available to the international research community via application 
(https://biobank.ndph.ox.ac.uk/showcase/index.cgi) [29,35]. These 
data are suitable for observational analysis of a vast array of clinical 
phenomena. Here, we utilized data on single nucleotide polymorphisms 
(SNPs), disease diagnoses, and relevant demographics data collected 
through extensive patient questionnaires. We use SNPs to establish ge-
notypes that are implicated in AOPs relevant to the toxic outcome of 
interest, diagnoses to construct case and control cohorts, and de-
mographic data to balance cohorts with respect to a number of de-
mographic and clinical covariates of interest. All UKBB data used in this 
study are from the current data release as of November 2020. 

2.2. Obtaining genotypes for cohort patients 

In this study, we focus on LC as a clinical endpoint of interest, but our 
methods are generalizable to other diseases. Although there are several 
major subtypes of LC, we treat it as a single disease phenotype, due both 
to a lack of granularity in established LC AOPs, as well as to provide a 
larger training dataset for the HIBACHI program. To find genetic vari-
ants that play a role in the etiology of LC, we retrieve AOPs related to LC 
and extract SNPs annotated to key events within those AOPs. Using the 
AOP-DB, we query AOP titles, organ specificity annotations, and event 
components (KEs and MIEs) for presence of the terms “liver” and “he-
patocellular” to fetch AOPs related to LC. These AOPs, MIEs, and KEs are 
listed in-detail in Table S1. We then manually remove any AOPs 
describing hepatic steatosis – a disease that, while a known risk factor 
for LC, has a distinctly different underlying etiology (Schulz et al. 2015). 
Using these identified AOPs, we retrieve annotations to the EntrezGene 
database via associations present in the AOP-DB’s “AOP_gene” table 
[26]. In creating the AOP-DB, SNPs associated with KEs were originally 
obtained from the GTEX v7 Single Tissue eQTL dataset [13] and from the 
GWAS v1.0.2 All Associations dataset (https://www.ebi.ac. 
uk/gwas/docs/methods/criteria). 
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Finally, we assess overlap between the AOP SNPs and SNPs included 
in the UKBB genetic data. For every SNP we identify in the AOP data, we 
obtain genotypes at that locus for all patients in the cohorts defined 
below, and encode them in an additive model, (e.g., homozygous major 
allele is “0′′, heterozygous is “1”, and homozygous minor allele is “2”) 
since this format is easily consumed by downstream analysis tools (e.g., 
HIBACHI). All AOP SNPs not included in the UKBB data were omitted 
from consideration in downstream analyses. It should be noted that all 
LC/SNP associations are determined using expert-curated biomedical 
knowledge originally mined from the AOP-Wiki, and are therefore in-
dependent from any observational biases that may be present in the UK 
Biobank genotype data. 

2.3. Phenotyping and assembling patient cohorts 

To assemble cohorts for statistical modeling of our toxic outcome of 
interest, we retrieved pertinent data from the UKBB [35]. We first filter 
all patients in the UKBB based on availability of SNPs included in our 
AOP network. Using the set of SNPs identified above (SNPs found in both 
AOPs and the UKBB), we retrieve unique identifiers for patients with 
that set of SNPs available. To construct raw (unbalanced) case and 
control cohorts, we then separated this set of patients into those with a 
diagnosis of LC (based on presence of the ICD-9 code prefix “C22”) and 
without LC (all others). 

Because many environmental factors can act as confounding vari-
ables in observational analyses of complex diseases, these confounders 
need to be balanced in the case and control cohorts to minimize the risk 
of predictive models learning to distinguish patients based on the con-
founding variables rather than the presence or absence of the disease of 
interest. In the case of this study, the predictive model is the output of 
HIBACHI’s genetic programming algorithm, and the disease of interest is 
LC. Although there are several strategies for producing balanced co-
horts, we used the propensity score matching (PSM) method. Briefly, 
PSM involves training a logistic regression model where input features 
are the confounders and the output is the propensity score, or probability 
of being a member of the treatment (case) group [5]. This logistic 
regression model is then used to match each sample in the case cohort to 
one or more samples in the control cohort based on having similar 
propensity scores. The resulting cohorts have an (approximately) 
balanced distribution of propensity scores within each possible value 
across all confounders. For confounders with continuous rather than 
categorical values (e.g., age), values are binned into equally sized groups 
across the range of values prior to matching. In doing so, PSM minimizes 
the estimation bias contributed by each confounding variable to the 
overall predictions of a model trained on the balanced dataset. 

In this study, we performed PSM on the raw case and control cohorts 
using the following confounding features: age at recruitment, sex, 
ethnicity, and Townsend deprivation index (a composite measure of 
material deprivation within a population, incorporating employment 
status, car ownership, home ownership, and household overcrowding) 
[39]. Each of these is a known demographic confounder for LC risk, and 
the data is provided by UKBB questionnaire data available for all pa-
tients. Additionally, inclusion of the Townsend index helps to ensure 
generalizability of study results across socioeconomic groups, particu-
larly those with historically poor access to quality healthcare. We also 
included diabetes status (presence of the ICD-9 code prefix “E1”) as a 
cofounder, as diabetes is a significant risk factor for LC [19]. We used the 
Pymatch library (https://github.com/benmiroglio/pymatch) to 
construct the propensity score model, perform the matching procedure, 
and visualize confounder imbalance before and after matching. Since LC 
is a relatively rare diagnosis in the UKBB data, we increased the size of 
our dataset for training HIBACHI by matching 4 control patients to each 
case patient. We specified a propensity score similarity threshold of 
1*10− 4 – the smallest value that retains 100 % of the LC cohort. 

2.4. Exploring genetic contributions to toxicity using genetic programming 

We ran HIBACHI (available on GitHub at https://github.com/Epista 
sisLab/hibachi) on an input model consisting of patients in the PSM- 
balanced case and control cohorts constructed using the method 
described above. Specifically, we retrieved the LC SNPs of interest 
(described above) for each of the patients in the balanced case and 
control cohorts and used those to construct a feature matrix (in the 0,1,2 
format, representing an additive or ordinal genetic model) with LC 
outcome being the binary target variable. We then trained HIBACHI on 
this LC dataset, with algorithm metaparameters of 100 generations of 
evolution and a population size of 100. Since HIBACHI outputs both a 
synthetic dataset with the characteristics of the training dataset as well 
as the generative model used to construct that dataset, we inspected 
both in order to explore genetic mechanisms that may govern suscep-
tibility to LC following toxic exposures. To account for potential linkage 
disequilibrium (LD) between implicated SNPs, we computed pairwise R2 

and D’ values between all implicated SNPs (i.e., showing up more than 
once in the learned generative models) using the LDpair module in the 
National Cancer Institute’s LDlink toolkit [20]. Any pair of SNPs in 
statistically significant LD should be treated as suspect if they occur in 
the same generative model. 

3. Results 

3.1. AOPs and SNPs associated with liver cancer 

Our initial query for LC AOPs finds 16 liver related AOPs and 189 
SNPs associated with these AOPs. AOPs 1, 37, 41, 46, 107, 108, and 117 
are specific, describing a particular etiology of LC or hepatocellular 
carcinoma, while the other AOPs describe LC in a more general context. 
Interestingly, the AOPs describing liver fibrosis, hepatotoxicity, and 
liver injury contain no SNP associations, although a number of these 
AOPs are still under development. The AOPs that feature SNP associa-
tions often specify a primary gene, inhibitor, or activator that plays a key 
role in the AOP, such as ABCB11 for AOP 27, PPARɑ for AOP 37, AHR for 
AOP 41, and AFB1 for AOP 46. Five AOPs in this list were derived from 
rodent experimental data (AOPs 37, 41, 107, 108, and 117), while the 
rest are based upon human-derived evidence. A full list of LC AOPs and 
their associated SNPs (including omitted AOPs related to hepatic stea-
tosis) is given in Supplemental Information (Table S1). Figs. 1 and 2. 

3.2. UKBB liver cancer cohort characteristics 

Of the 189 SNPs identified within the AOPs, 25 are represented in the 
UKBB genotype data (Table 1). The remaining 164 SNPs may be missing 
due to limited coverage of genotyping panels, semantic inconsistencies 
between the AOP-DB and UKBB variant nomenclature, or other issues. 
We identified 488,377 patients with genotypes available for these SNPs. 
Of these patients, 580 had an LC diagnosis. We then generated balanced 
case and control cohorts using the propensity score matching method 
described above. To ensure that the matching procedure was effective, 
we generated plots for case/control covariate ratios both before and 
after the matching and used the chi-square test for independence to 
verify that these ratios are significantly different. For every covariate 
included in PSM, the difference before and after matching was highly 
significant, indicating that the dataset was highly unbalanced before 
PSM, and well-balanced after PSM. Recall that “balanced” in terms of 
PSM does not necessarily mean equal – rather, the counts of patients 
within each demographic group were sampled in a way that minimizes 
estimation bias contributed from each model covariate. For example, the 
most prevalent ethnicity in our dataset by far is “White – British”, in both 
the original and PSM-balanced datasets. Full details and visualizations 
of PSM are provided in Supplementary Information. The final, balanced 
dataset includes 2,895 patients (579 cases, 2,316 controls) with 
approximately equal distributions of all covariates in the two cohorts. 
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We matched 4 controls to each case, to help compensate for the relative 
rarity of LC in the overall patient population. 

3.3. Using HIBACHI to infer AOP-related genetic interactions 

The 7 best (i.e., having the highest fitness score on the balanced input 
dataset) models found by HIBACHI are shown in Table 2. Since our 
response variable (LC) is encoded as a binary target in the dataset (1 =
LC, 0 = no LC), the models generally only produce binary outcomes. 
Note that specific motifs are replicated across several of the best models, 
which are indicative of robust relationships between specific SNPs that 

influence risk, as well as the evolutionary nature of HIBACHI’s algo-
rithm–the most fit models in each generation ‘survive’ and are subject to 
refinement by mutation in subsequent generations. Refer to the Dis-
cussion section for a more complete interpretation of the interactions 
suggested by the most fit models. The 4 SNPs that appear repeatedly in 
the 7 most fit models are X7 (rs563694), X10 (rs552976), X19 
(rs4410790), and X9 (rs16856247). 

Fig. 1. Building balanced cohorts for learning interactions between AOP key events using HIBACHI.  

Fig. 2. Network diagram highlighting the SNPs found in HIBACHI’s most fit models, along with the network context of their associated genes and AOPs. Note that 
SNPs not highlighted by the HIBACHI models are omitted. A full network of all LC AOPs along with their full sets of associated genes and SNPs can be found in 
Supplemental Figure S1. 
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3.4. Estimating independence of identified SNPs via linkage 
disequilibrium 

Of the 4 well-represented SNPs in the HIBACHI models, only X7 
(rs563694) and X10 (rs552976) were found to be in linkage disequilib-
rium (LD) with a r2 of 0.419 and a D’ of 0.868 [33]. Therefore, motifs 
involving both X7 and X10 (which are present in the top 4 models in 
Table 2) should be treated as suspect, since the SNPs will tend to 
segregate together. Nonetheless, their presence in the top 4 models is 
evidence that HIBACHI indeed detects meaningful patterns in the SNP 
data and incorporates those patterns into its learned generative models. 
Full results of the LD analysis are given in Supplemental Table S3. 

4. Discussion 

The 4 SNPs implicated by HIBACHI are members of 2 AOPs: Chole-
static Liver Injury induced by Inhibition of the Bile Salt Export Pump 
(ABCB11), and Sustained AhR Activation leading to Rodent Liver Tumors. 
Since these two AOPs directly implicate key roles played by the Abcb11 
and Ahr genes, these can be thought of as the central mediators of 

genetic risk to toxicity-induced LC. However, although these genes may 
be the most important in terms of disease etiology, the HIBACHI- 
identified SNPs may instead serve as regulatory mechanisms that in-
fluence the tendency of those genes to result in a disease state. The 
implications of this finding could impact many areas of research, 
including suggesting new therapeutic targets for treatment/prevention, 
previously unknown stressors, or even new subtypes of LC (e.g., hepa-
tocellular carcinoma, cholangiocarcinoma, etc.) with different etiologies 
and progression of disease. This study shows how genetic programming 
can be leveraged to create new hypotheses for future targeted in-
vestigations. Although we focused particularly on LC, our approach 
should be easily generalizable to other diseases, given adequate AOP 
coverage for the disease and sufficient observational data to construct 
the respective cohorts. 

Although in this study we demonstrate the ability of genetic pro-
gramming and heuristic simulation to gain insights into the genetic 
mechanisms underlying toxicity risk, we have not yet explored the in-
fluence of specific stressors (i.e., toxicants) on these genetic mecha-
nisms. For example, a genetic factor might influence whether an AOP is 
triggered by a certain stressor, but not other stressors. The key proteins 
involved in the two AOPs we describe above (ABCB11 and AHR) are 
well-studied and many ligands have been established. Currently known 
stressors for ABCB11 include cholestasis-inducing drugs (e.g., cyclo-
sporine A, rifampicin, others) [30]. AHR has many known stressors, 
including the two diverse families known as the halogenated and poly-
cyclic aromatic hydrocarbons [14]. As of now, no stressors are formally 
encoded for these two AOPs in either the AOP-DB or the AOP-Wiki, but 
we expect these data will be completed as data curation efforts for 
computational toxicology continue to mature. 

4.1. Generative models are suggestive of epistatic interactions in 
conferring LC risk 

As we discussed previously, the generative models produced by HI-
BACHI (see Table 2) are interpretable mathematical models that can be 
used to generate synthetic data with similar characteristics to the 
training data. These models can be likened to symbolic regression 
models, albeit computed using a brute-force search process with 
evolutionary refinement rather than via convex optimization. Therefore, 
specific operations in the highest ranked generative models should 
correspond to robust patterns that distinguish cases (LC) from non-cases 
(no LC) patients in the training dataset. When considered with the re-
sults of our linkage disequilibrium analysis, the most common motif in 
the most-fit models is (X10 XOR X7). Although these two genes are indeed 
in LD, the influential role they play suggests one or both could be highly 
significant in conferring LC risk, when considered in conjunction with 
the other LC AOP SNPs that appear in the most fit models. 

Table 1 
Each relevant SNP, along with respective gene, associated AOP_id, and how each 
SNP was represented in the HIBACHI program.  

SNP Gene (Hugo) AOP_id Hibachi identifier 

rs2025516 NR1l3 107 X1 

rs4073054 NR1l3 107 X2 

rs115624142 NR1l3 107 X3 

rs116791819 NR1l3 107 X4 

rs12069336 NR1l3 107 X5 

rs72884586 ABCB11 27 X6 

rs563694 ABCB11 27 X7 

rs569805 ABCB11 27 X8 

rs16856247 ABCB11 27 X9 

rs552976 ABCB11 27 X10 

rs2287623 ABCB11 27 X11 

rs16856332 ABCB11 27 X12 

rs10172795 ABCB11 27 X13 

rs117263259 AHR 41 X14 

rs71540771 AHR 41 X15 

rs117132860 AHR 41 X16 

rs4476901 AHR 41 X17 

rs115256444 AHR 41 X18 

rs4410790 AHR 41 X19 

rs6968865 AHR 41 X20 

rs12670403 AHR 41 X21 

rs11109969 NR1H4 27 X22 

rs1625895 TP53 46 X23 

rs4253772 PPARA 37 X24 

rs5031002 AR 117 X25  

Table 2 
Most fit generative models learned by HIBACHI, trained on the propensity score matched UKBB genotype dataset. Along with the model, HIBACHI produces a synthetic 
version of the training dataset constructed using that model. Higher fitness scores indicate better approximation of the training dataset. Arithmetic operations are 
applied to the values (0, 1, or 2) comprising the input dataset – for example, “X10!” indicates “the factorial of the value representing SNP X10”. “XOR” and “AND” are 
logical Boolean operations, and ‘mod’ is the modulo operation.  
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Another SNP that is highly prevalent in the most fit models is X19 
(rs4410790; within the AHR gene). When taken into consideration with 
X10 and X7 (rs552976 and rs563694, respectively; both within ABCB11), 
the HIBACHI models suggest an epistatic interaction involving both AHR 
(the aryl hydrocarbon receptor; a transcription factor that plays a sig-
nificant role in detecting and metabolizing xenobiotic chemicals in the 
liver) [14] and ABCB11 (which encodes the bile salt export pump pro-
tein, a key component in normal, healthy function of the liver) [34]. In 
each of the top 4 models, HIBACHI yields two motifs–one containing two 
SNPs within the ABCB11 gene, and the other containing at least one SNP 
from the AHR gene, along with another, variable number of other 
SNPs–that are joined by the boolean “AND” operation, meaning that 
both motifs must evaluate to “1” to result in an outcome of LC in the 
generative models. In other words, variation in multiple genes involved 
in the same AOP is required to observe the disease phenotype. 

Although these findings are not yet supported by robust experi-
mental evidence, they are highly biologically plausible: AHR is a key 
player in the liver’s toxic response, and ABCB11 governs a central role of 
the liver; therefore, it would make sense that an interaction between 
both genes helps govern risk for toxicity-mediated liver outcomes. This 
association could be highly significant clinically, and merits further 
investigation, either by investigating larger sets of observational data, 
performing studies in animal models, or both. 

Since population-specific prevalence of alleles can affect both the 
learning of the model (e.g. with populations that have high- or low- 
prevalence alleles acting as confounders) and the generalizability of 
results (the study having limited benefit for populations with a low 
presence of implicated alleles), it is critically important to inspect the 
prevalence across included populations when interpreting results 
[8,21]. The 3 SNPs we list above (rs4410790, rs552976, and rs563694) 
are generally consistent across populations in the 1000 Genotypes 
Project Phase 3 dataset [4], with the exception of rs55297 in East Asian 
groups (overall variant allele frequency 0.748; East Asian VAF 0.993) 
and rs563694 also in East Asian groups (overall VAF 0.158; East Asian 
VAF 0.026). Therefore, these results may be of limited value to in-
dividuals from an East Asian background. However, since self-reported 
ethnicity was one of the confounders included in propensity score 
matching, the actual impact of this phenomenon on the HIBACHI model 
and the interpretation of our results should be minimal. We strongly 
encourage users of our methodology to carefully inspect population 
frequencies of alleles, particularly for SNPs that are present in the 
learned generative model. Whenever possible, users should also choose 
diverse datasets that are well-annotated with patient demographics and 
supported by rigorous previous analyses. 

4.2. Adjusting cohorts using propensity score matching 

Any statistical model learned on observational data is at risk of 
becoming biased due to the presence of confounding variables. We used 
the propensity score matching technique–which is a well-established 
technique in health data research–to select case and control cohorts 
with similar (almost identical) distributions of a number of important 
covariates and show in the process that these covariates are significantly 
unbalanced before the PSM procedure is applied. This leads to two 
important phenomena. First, there is minimal risk of the interacting 
SNPs discovered by HIBACHI to reflect associations with the covariates 
rather than the outcome of interest (in this case, LC). Second, the 
resulting models should generalize better across different clinical sub-
populations. For example, since we included the Townsend deprivation 
score–a composite measure of material deprivation–and ethnicity in the 
set of PSM covariates, we can ensure that our case and control cohorts 
are more socioeconomically and racially balanced than if we did not 
match on them. Historically, failure to do so has led to study results that 
do not generalize to underrepresented groups. Beyond these social jus-
tice implications, failure to adjust for these factors may lead to con-
structing a case cohort with less access to high-quality medical care, and 

therefore worse outcomes or clinical data quality. 

4.3. Limitations 

Our analysis comes with some limitations, and they are seen through 
the HIBACHI model results, as the models aren’t independent experi-
ments. Some genetic motifs in the models can be artifacts of the evolu-
tionary process rather than meaningful genetic interactions and future 
HIBACHI analysis will need to account for this. We also need to dig 
deeper into the biological relationships between the SNPs by running 
validation experiments. Finally, the underlying premise behind using 
HIBACHI to perform this analysis is that we hope to capture the ‘most fit’ 
models simply by random search followed by refinement using evolu-
tionary algorithms, which can be considered a somewhat ‘brute force’ 
approach. A more computationally efficient approach would involve the 
use of symbolic regression instead of an evolutionary algorithm to 
explore the search space of all potential generative models. However, we 
consider our current approach to be both effective and appropriate for 
this new area of investigation, as the behavior of genetic phenomena 
(with possible hidden interactions between features) is poorly under-
stood with respect to symbolic regression, and therefore symbolic 
regression algorithms may not be well-adapted to this task at the current 
time. 

4.4. Future work 

We want to explore how HIBACHI works for other adverse outcomes 
of interest. This is the first time HIBACHI was used to interpret biological 
relationships from its learned models, and we need to repeat this type of 
analysis in other scenarios to fully characterize its ability to recognize 
meaningful biological relationships. The adverse outcome of interest for 
our future analysis is cardiovascular disease. Cardiovascular disease is of 
interest because the heart and blood vessels are notably affected as a 
result of COVID-19 infection, the disease that has caused a global 
pandemic for over two years. A list of cardiovascular based AOPs and 
SNPs have been established by queries in the AOP-DB using the same 
process described in the genotype section of the methods to run in the 
HIBACHI program for future study. Future analysis should apply the 
phenotypic data gathering process to different populations. UKBB was 
our first population of analysis, but we want to apply HIBACHI to other 
populations as well to explore the robust nature of genetic relationships 
through patient populations. Another step for future studies is to look at 
the individual contribution each SNP has for risk of liver cancer through 
statistical and experimental methods. An example would be to leverage 
CRISPR-Cas9 nickase technology to selectively edit candidate single 
nucleotides in cell culture [3] and evaluate the impact of later 
measurable key events that are predicted to be modulated. This method 
can therefore quantitate the impact of SNPs that are identified by HI-
BACHI and provide validation for these computational predictions. 

5. Conclusions 

In this study, we show that genetic programming and graph data 
science can be leveraged to uncover patterns of genetic regulation in 
adverse outcome pathways using real-world observational data. Our 
approach provides one of the first concrete examples of using HIBACHI – 
an open-source software tool originally designed to create synthetic 
datasets with interactions between features – on a task that increases our 
understanding of biological phenomena. We describe a novel association 
between variants in the AHR and ABCB11 gene that – when occurring 
simultaneously – seem to confer increased risk for liver cancer. As a side 
effect, we also provide a concrete example of using HIBACHI to generate 
synthetic versions of genetic data, which enables the sharing of genetic 
data without risks to patient privacy. Furthermore, the technique we use 
for balancing data with respect to a score of socioeconomic deprivation 
provides a means for improving social justice in epidemiological 
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analyses of environmental health. We feel that this study represents the 
first in a larger body of work exploring how genetic programming can be 
used to improve our understanding of the genetic mechanisms under-
lying disease, as well as clinical phenomena resulting from toxic 
exposures. 
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