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Abstract: Venoms are a diverse and complex group of natural toxins that have been adapted to treat
many types of human disease, but rigorous computational approaches for discovering new therapeu-
tic activities are scarce. We have designed and validated a new platform—named VenomSeq—to sys-
tematically identify putative associations between venoms and drugs/diseases via high-throughput
transcriptomics and perturbational differential gene expression analysis. In this study, we describe the
architecture of VenomSeq and its evaluation using the crude venoms from 25 diverse animal species
and 9 purified teretoxin peptides. By integrating comparisons to public repositories of differential
expression, associations between regulatory networks and disease, and existing knowledge of venom
activity, we provide a number of new therapeutic hypotheses linking venoms to human diseases
supported by multiple layers of preliminary evidence.

Keywords: venoms; transcriptomics; RNA-Seq; translational bioinformatics; systems biology; drug
discovery

Key Contribution: In this study, we describe a new technology—named VenomSeq—for discovering
therapeutic activities in animal venoms. VenomSeq is based on exposing human cells in culture
to dilute concentrations of venoms and venom peptides, and using the resulting differential gene
expression patterns to compare them to existing drugs.

1. Introduction

Venoms are complex mixtures of organic macromolecules and inorganic cofactors
that are used for both predatory and defensive purposes. Since the dawn of recorded
history, humans have exploited venoms and venom components for treating a wide array
of illnesses and conditions, a trend which has continued into modern times [1]. Currently,
approximately 20 venom-derived drugs are in use worldwide, with 6 approved by the
US Food and Drug Administration for clinical use, and many more currently undergoing
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clinical trials [2]. As new discovery of synthetic small-molecule drugs has slowed con-
siderably in recent decades, venoms and other natural products hold great promise for
discovering innovative treatments for disease and injury, especially for diseases that have
evaded treatment through conventional medical science.

Depending on the species, a single venom can contain hundreds of distinct com-
pounds [3]. Current estimates suggest that approximately 200,000 venomous animals exist
across the tree of life. As a result, venom-derived compounds are an immense library
of candidates for drug discovery which are virtually guaranteed by natural selection to
be biologically active [4,5]. Venoms and venom-derived compounds that have already
been approved for therapeutic use tend to be relatively small peptides (e.g., fewer than
∼20 residues) or smaller analogs that mimic the active effect of peptides [6]. Although
most drugs on the market are small molecules, this is due partially to their convenience
in drug design, and as novel drug discovery becomes more challenging, the use of larger,
biologically derived molecules (named biologics) is becoming increasingly common [7].
Important challenges and considerations in venom-based drug design include maintaining
structural stability and ensuring that the compound can be delivered successfully [8].

Toxinologists have applied modern high-throughput sequencing (HTS) methodolo-
gies to the study of venoms (a field that has come to be known as venomics) [5]. Ven-
omics generally involves the sequencing and structural identification of multiple types
of macromolecules—genomic DNA, venom gland mRNA transcripts, and/or venom
proteins—to best evaluate which genes, transcripts, and polypeptides (including post-
translational modifications) are present in a venom and responsible for its activity.

Venomics has become a popular framework for drug discovery in recent years. In-
novative advances in this area include engineering bacteria to express venom-based drug
screening libraries [9], designing high-throughput venom assays for specific drug tar-
gets [10], and optimizing venom-derived lead compounds to function better as drugs [11],
among others. However, other applications of HTS and biomedical data science beyond
the discovery/evaluation of venom components can be used for drug discovery. One such
application is the data-driven analysis of perturbational gene expression data, in which
human cells are exposed in vitro to controlled dosages of candidate compounds and then
profiled for differential gene expression via RNA sequencing (RNA-Seq). Here, we present
VenomSeq —a new informatics workflow for discovering associations between venoms and
therapeutic avenues of treatment for disease.

Briefly, VenomSeq involves exposing human cells to dilute venoms and then generat-
ing differential expression profiles for each venom, comprising the significantly up- and
downregulated genes in cells perturbed by the venom. We then compare the differential
expression profiles to data from public compendia of perturbational gene expression data
to propose new therapeutic hypotheses based on similarities to existing pharmaceutical
drugs, and support our findings by validating the differential expression data against gene
regulatory networks corresponding to disease states. VenomSeq works in the absence of any
predefined hypotheses, instead allowing the data to suggest hypotheses that can then be
explored comprehensively using rigorous traditional approaches.

In this paper, we describe the implementation of VenomSeq and apply it to the crude
venoms of 25 diverse animal species and 9 purified teretoxins. In doing so, we identified
six crude venoms and one teretoxin with strong similarities to publicly available expression
profiles for established drug classes. We also provide technical validation in the form of
(a) applying VenomSeq to 37 (non-venom) drugs with known activities and (b) previously
generated reference data for 19,811 small-molecule compounds, finding that VenomSeq’s
therapeutic hypotheses on these data are enriched for drugs’ known therapeutic classes.
VenomSeq and all resulting data from our analyses are open source and freely available to
the scientific community.
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2. Results and Discussion

2.1. Venom Dosages

In order to optimize the exposure concentrations of each venom, we performed growth
inhibition assays on human cells exposed to varying concentrations of the venoms. This is
necessary to minimize the impact of toxicity while ensuring the venom is in high enough
concentration to exert an effect on the human cells. Since each venom comprises many
(largely unknown) molecular components, we performed the assays on samples of venom
measured in mass per volume, rather than compound concentration (molarity). We used
GI20—the concentration of a venom at which it inhibits growth of human cells by 20%—as
the effective treatment dose in all subsequent experiments. It should be noted that this does
not reflect a desire to select venoms with an inhibitory effect on cell growth. Rather, it is a
heuristic approach to establishing effective dosages for high-throughput screening where
preferred dosages are not available a priori.

The experimental GI20 values and complete dose–response data for each of the 25 venoms
are provided in Table A1, a sample of which is reproduced (for S. maurus) in Table 1. The
resulting growth inhibition curves for all venoms are shown in Figure 1. Venoms from
L. colubrina, D. polylepis, S. verrucosa, S. horrida, C. marmoreus, O. macropus, and P. volitans
did not demonstrate substantial growth inhibition at any tested concentration, so for
those venoms, we instead performed sequencing at 1.0 µg µL−1,which is the highest
concentration used in the growth inhibition curves.

Table 1. Statistics for S. maurus growth inhibition data.

S. maurus Venom vs. IMR-32

GI20 (µg µL−1) 0.0926

R2 0.991

Hill slope

Bottom −2.096
Top 92.572
log GI50 −0.640
Slope (h) −1.928

2.2. mRNA Sequencing of Venom-Perturbed Human Cells

After determining appropriate dose concentrations for each venom, we performed
RNA-Seq on human IMR-32 cells exposed to the individual venoms. Table 2 summarizes
the experimental conditions used for sequencing. After transforming the raw sequencing
reads to gene counts (see Section 4.5), we compiled the results into a matrix, where rows
represent genes, columns represent samples, and cells represent counts of a gene in a
sample. For detailed quality control data, refer to Appendix B, which includes links to
related files. The raw (i.e., FASTQ files produced by the sequencer) and processed (i.e.,
gene counts per sample) data files are available for download and reuse on NCBI’s Gene
Expression Omnibus database; accession GSE126575.

Table 2. Experimental conditions for RNA-Seq.

Venoms 25 species
Cell line IMR-32 (Human neuroblastoma)
Dosage GI20 for each venom
Time points 6/24/36 h post-treatment
Replicates 3 per time point per venom
Controls 12 water controls, 9 untreated
Solvent Water
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Figure 1. Growth inhibition plots for each of the 25 venoms. GI20 values are provided, unless growth
inhibition was not observed (in which case sequencing was instead performed at 2 mg µL−1). Dashed
lines indicate x- and y-intercepts of GI20 values.
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2.3. Differential Expression Profiles of Venom-Perturbed Human Cells

We constructed differential expression signatures for each of the 25 venoms as de-
scribed in Section 4.6, where each signature consists of a list (length ≥ 0) of significantly
upregulated genes and a list (length ≥ 0) of significantly downregulated genes. The
specific expression signatures are available on FigShare at https://doi.org/10.6084/m9
.figshare.7609160 (accessed on 6 July 2023)). An excerpt from the expression signature for
O. macropus is shown in Table 3. The total number of differentially expressed genes for
each venom ranges from 2 genes (Laticauda colubrina and Dendroaspis polylepis polylepis)
to 1494 genes (Synanceia verrucosa). Gene-wise statistical significance is a function of both
log2-fold change and the number of observed counts.

Table 3. Partial differential expression signature for O. macropus. Most of the significantly differen-
tially expressed genes (35 of 41 total) are omitted for brevity.

Gene Base Mean log2-FC Wald Statistic p-Adj

SPRY4 37.38 −2.27534 −3.3084 0.0991
REPIN1 38.30 −0.95256 −4.3326 0.0061
DUSP14 33.88 −0.91311 −3.3327 0.0991

...
...

...
...

...
BRD3 130.81 1.37645 4.115 0.0096
RSRC1 63.48 1.38140 4.2042 0.0091
BAZ1B 120.05 1.69463 5.0846 0.0003

Using publicly available differential expression profiles for existing drugs—many
with known effects and/or disease associations—we were able to identify statistically
significant associations between venoms and classes of drugs. These associations are based
on the methods developed by the Connectivity Map (CMap) project [12], and utilize their
perturbational differential expression data as the “gold standard” against which to evaluate
the venom expression data. In short, this approach uses a Kolmogorov–Smirnov-like
signed enrichment statistic to compare a query signature (i.e., venoms) to all signatures in
a reference database (i.e., known drugs), normalizing for cell lines and other confounding
variables, and finally aggregating scores of ‘like’ signatures (i.e., drug mechanisms of action
(MoAs)) using a maximum-quantile procedure. Complete details of these methods are
provided in Section 4.7.1.

Different venoms yield different profiles of connectivity scores based on the genes
present in their differential expression signatures. For example, all connectivity scores
between B. occitanus and CMap perturbagens are zero, and all connectivity scores between
S. horrida and CMap perturbagens are negative, which suggest that these venoms either
behave like no known perturbagen classes, or that the venoms have no therapeutic activity
on IMR-32 cells. Kernel density plots of the connectivity scores for each venom are shown in
Figure 2. In Figure 3, we show several visualizations of the connectivity analysis results that
highlight characteristics of the data. Interestingly, when hierarchical clustering is performed
on the connectivity scores by venom perturbation, the venom perturbations form robust
clustering patterns that persist across multiple non-overlapping subsets of the connectivity
data. This suggests that the clustering corresponds to meaningful characteristics of the
venom perturbations in comparison to known drugs, although these characteristics are
not readily apparent (i.e., the clustering does not reproduce taxonomy or other obvious
traits of the venoms). Similarities between perturbational expression signatures represent a
similar function in biological systems (rather than the relatedness of the venoms’ species
of origin). Therefore, the clustering patterns may indicate processes such as convergent
evolution, which is widely acknowledged as a major driving factor in the development of
venom arsenals [13].

https://doi.org/10.6084/m9.figshare.7609160
https://doi.org/10.6084/m9.figshare.7609160
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zero: 0.7
positive: 0.16
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zero: 0.6

positive: 0.25

R. marina
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zero: 0.74
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zero: 0.58
positive: 0.31

A. mellifera
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positive: 0.0

V. crabro

negative: 0.22
zero: 0.53

positive: 0.25

S. subspinipes
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negative: 0.096
zero: 0.82

positive: 0.08

C. marmoreus
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zero: 0.56
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P. volitans

Normalized connectivity score (NCS)

Figure 2. Kernel density plots of normalized connectivity scores (NCSs) for each of the 25 venoms.
Note the tendency to introduce sparsity by setting NCS to zero if the quantities a and b have
opposite signs (see Section 4.7.1). Text labels indicate proportion of NCSs for a single venom that are
negative, zero, or positive. Each plot is based on 473,647 NCSs (all differential expression profiles in
GSE92742 [14]).
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(a)

(b)

(c)

Figure 3. Connectivity analysis results. (a) Heatmap of τ-scores between the 25 venom perturbations
and the 500 Connectivity Map signatures with the highest variance across all venoms. A distinct
hierarchical clustering pattern is evident across the venom perturbations, although it does not
conform to any obvious grouping pattern of the venoms. (b) Principle component analysis of the
25 venom perturbations, where features are all τ-scores between the venom and signatures from the
Connectivity Map reference database. Four distinct outliers are labeled—these venoms correspond
to outliers in the heatmap. Also shown are the ratios of variance explained by each of the first
21 principle components—after the first principle component, the distribution is characterized by a
long tail, suggesting that much of the variance is spread across many dimensions, underscoring the
complexity of the connectivity score data. (c) Barplot showing the number of significant differentially
expressed genes for IMR-32 cells exposed to each of the 25 venoms.

2.4. Associations between Venoms and Existing Drugs

The associations we identified are shown in Table 4. As we anticipated, only some
venoms show strong associations to any classes of drugs. Interestingly, only one venom
(S. subspinipes dehaani) was linked to an ion channel inhibition MoA—venoms, in general,
tend to have powerful ion-channel-blocking or -activating effects. However, this may be
due to a preponderance of non-ion-channel MoAs in the CMap data rather than an actual
lack of ability to identify ion channel activity.

Many of these MoAs comprise either well-established or emerging classes of cancer
drugs. Some that have been used extensively as chemotherapeutic agents include CDK
inhibitors (palbociclib, ribociclib, and abemaciclib), topoisomerase inhibitors (doxorubicin,
teniposide, and irinotecan, among others), and DNA synthesis inhibitors (mitomycin C,
fludarabine, and floxuridine). Meanwhile, PI3K inhibitors and FGFR inhibitors are classes
of “emerging” chemotherapy drugs, each recently leading to many high-impact research
studies and early-stage clinical trials. The other classes are indicated for a diverse range
of diseases, including circulatory and mental conditions (calcium channel blockers) and
cardiac abnormalities (ATPase inhibitors).



Toxins 2023, 15, 451 8 of 33

Table 4. Venom–drug class associations.

Venom Drug Class (MoA)

Synanceia horrida ATPase inhibitor
CDK inhibitor
DNA synthesis inhibitor

Scolopendra subspinipes dehaani T-type Ca2+ channel inhibitor

Pterois volitans Topoisomerase inhibitor

Argiope lobata ATPase inhibitor
PI3K inhibitor
PPARγ agonist

Scorpio maurus FGFR inhibitor

Rhinella marina HIV protease inhibitor

2.4.1. Argiope Lobata Venom Versus Cardiopulmonary and Psychiatric Diseases

A. lobata is a species of spider in the same genus as the common garden spider. The
species is relatively understudied, largely due to its lack of interaction with humans,
despite being distributed across Africa and much of Europe and Asia. The venom from
species of Argiope spiders contain toxins known as argiotoxins [15], which are harmless
to humans, in spite of having inhibitory effects on AMPA, NMDA, kainite, and nicotinic
acetylcholine receptors, which have been implicated in neurodegenerative and cardiac
diseases. VenomSeq provides supporting evidence for therapeutic activity in each of these
classes. Overall, the complete venom proteome of A. lobata is understudied, and the only
component with significant existing research is argiotoxin-636 (sometimes referred to as
argiopin), which is an inhibitor of AMPA receptors [16].

Connectivity analysis links A. lobata venom to ATPase inhibitor drugs (see Figure A6),
which include digoxin, ouabain, cymarin, and other cardiac glycosides, and are used to treat
a variety of heart conditions [17] and cancers [18]. Another venom-derived compound—
bufalin (from the venom of toads in the genus Bufo) [19]—is considered an ATPase inhibitor,
and has demonstrated powerful cardiotonic effects [20,21]. These compounds inhibit the
cellular sodium–potassium ATPase ion channel, which has not previously been identified
as a target of A. lobata venom components. However, other components isolated from the
venom are known to inhibit the functionally similar glutamate receptor, making ATPase
activity plausible [22]. Connectivity analysis also links the venom to PPAR agonist drugs,
which are used to treat cholesterol disorders [23], diabetes [24], metabolic syndrome [25],
and pulmonary inflammation [26]. Interestingly, PPARγ activation results in cellular
protection from NMDA toxicity [27]. Given the known inhibitory effect of argiotoxins
on NMDA receptors [28], this is striking and biologically plausible evidence for toxin
synergism, where two or more venom components target multiple cellular structures with
related functions in order to incite a more powerful response [29].

Master regulator analysis supports these findings, as well. We found that A. lobata
venom is associated with a number of circulatory diseases, including hypertension, heart
failure, cardiomegaly, myocardial ischemia, and others. Additionally, it reveals strong
associations with an array of mental conditions, such as schizophrenia, bipolar disorder,
and psychosis. These associations are supported by recent research into argiotoxins (and
other polyamine toxins), showing that their affinity for iGlu receptors can be exploited to
treat both psychiatric diseases and Alzheimer’s disease [15].

2.4.2. Scorpio Maurus Venom for Cancer Treatment via FGFR Inhibition

S. maurus—the Israeli gold scorpion—is a species native to North Africa and the
Middle East. Its venom is not harmful to humans, but it is known to contain a specific
toxin, named maurotoxin, which blocks a number of types of voltage-gated potassium
channels—an activity that is under investigation for the treatment of gastrointestinal
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motility disorders [30]. Existing proteomic analyses of S. maurus venom have identified 65
distinct components, which can be broadly categorized as antimicrobial peptides, insect-
toxin-like peptides, sodium channel toxins, potassium channel toxins, and La1-like peptides
(which have unclear function) [31]. Researchers have noted significant intraspecies variation
in their venom proteomes based on geography [32].

Our connectivity analysis suggests an additional association with FGFR-inhibitor
drugs. FGFR inhibitors are an emerging class of drugs with promising anticancer activity,
and much research focused on them aims to understand and counteract their adverse
effects (see Figure A7). Although there is no prior mention of FGFR-related activity from
this or related species of scorpions, descriptions of unexpected side effects of S. maurus
venom on mice provide evidence that such activity could be true. In particular, the venom
has been shown to have biphasic effects on blood pressure: when injected, it causes rapid
hypotension, followed by an extended period of hypertension. The fast hypotension is
known to be caused by a phospholipase A2 in the venom, but no known components elicit
hypertension when administered in purified form [33]. The observed FGFR-inhibitor-like
effects on gene expression suggest that an unknown component (or group of components)
may cause the hypertensive effect via FGFR inhibition.

2.5. Differential Expression Profiles of Purified Teretoxins

Above, we described applying VenomSeq to crude venoms comprising potentially
many active ingredients, some of which may act synergistically. Another potential use
of VenomSeq is to explore therapeutic potential of individual venom components, which
tend to induce fewer gene expression changes and more closely resemble validated and
approved pharmaceutical drugs (which usually consist of only one or a few active ingredi-
ents). Since individual venom components interact with fewer target structures and lack
the synergistic effects found in crude venoms [34,35], it is important to determine whether
VenomSeq has the sensitivity to detect the therapeutic effects of single components. To this
end, we also constructed differential expression signatures for IMR-32 cells perturbed by
nine purified teretoxin peptides. Of the nine teretoxins, four yielded statistically significant
gene expression changes in IMR-32 cells. One of these, named Mki 8.7, produced a robust
expression signature with 25 differentially expressed genes. All teretoxin expression signa-
tures are available on FigShare at https://doi.org/10.6084/m9.figshare.22757963 (accessed
on 6 July 2023).

2.6. Associations between Venoms and Disease Regulatory Networks

Direct observations of expressed genes (via mRNA counts) provide an incomplete
image of the regulatory mechanisms present in a cell. To complement the CMap approach
that focuses on perturbations at the gene level, we designed a parallel approach that uses
cell-regulatory network data to investigate perturbations at the regulatory module (e.g.,
pathways and metabolic networks) level; an approach we refer to as master regulator
analysis. In master regulator analysis, the ARACNe algorithm [36] is used to obtain
regulatory network data for our cell line of interest (in this case, IMR-32), consisting a list of
regulons—overlapping sets of proteins whose expression is governed by a master regulator
(e.g., a transcription factor). The msVIPER algorithm [37] is then used to determine the
activity of each regulon by computing enrichment scores from observed expression levels
of the genes/proteins contained in that regulon (here, using the RNA-Seq results described
in Section 2.2).

We matched the significantly up- and downregulated master regulators for each
venom to diseases using high-confidence TF–disease associations in DisGeNET [38]—a
publicly available database of associations between diseases and gene network component.
This approach is based on the idea that diseases caused by the dysregulation of metabolic
and signaling networks can be treated by administering drugs that “reverse” the cause (i.e.,
abnormal master regulator activity) of dysregulation. Since we are interested in discovering
associations with multiple corroborating pieces of evidence, we specifically filtered for

https://doi.org/10.6084/m9.figshare.22757963
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diseases where two or more linked TFs are dysregulated when perturbed by the venom.
The complete list of associations are provided on figshare at https://doi.org/10.6084/
m9.figshare.7609793 (accessed on 6 July 2023); here, we describe a handful of interesting
observations.

The most prevalent class of illness (comprising 19.7% of all associations across all
venoms) is DISEASES OF THE NERVOUS SYSTEM AND SENSE ORGANS. This is not surprising,
considering many of the 25 venoms have neurotoxic effects, and IMR-32 is a cell line
derived from neuroblast cells. One source of bias in these results is that similar diseases
tend to be associated with the same regulatory mechanisms [39]. For example, associations
between a venom and schizophrenia will often be co-reported with associations to other
mental conditions, such as bipolar disorder and alcoholism.

2.7. MOAs of Venoms Versus Synthetic Small-Molecule Drugs

In the connectivity analysis portion of VenomSeq, we demonstrated that these tech-
niques can identify novel venom–drug class associations and corroborate known venom
activity. One distinct advantage of performing queries against the CMap reference dataset
is their inclusion of manually curated perturbagen classes (PCLs), which allow for the nor-
malization of data gathered from multiple perturbagens and multiple cell lines, aggregated
at a class level that corresponds approximately with the drug mode of action. For this
reason, hypotheses generated by the connectivity analysis portion of VenomSeq are often
testable at the protein level.

One important caveat is that venom components have a tendency to interact with cell
surface receptors (e.g., ion channels or GPCRs), inciting various signaling cascades and
therefore acting indirectly on downstream therapeutic targets. While this is certainly the
case for many drugs as well (GPCRs are considered the most heavily investigated class
of drug targets [40]), small molecules can often be designed to enter the cell and interact
directly with the downstream therapeutic target. This has important implications regarding
assay selection for the in vitro validation of associations learned through the connectivity
analysis. For example, if the MoA of interest is the inhibition of an intracellular protein (e.g.,
topoisomerase), a cell-based assay should be considered when testing venom hypotheses,
since the venom likely is not interacting directly with the topoisomerase (and, therefore,
the effect would not occur in non-cell-based assays).

2.8. Venoms Versus Human Diseases

The master regulator analysis portion of VenomSeq discovers associations between
venoms and the diseases they may be able to treat, rather drugs. This could be especially
useful for discovering treatments for diseases with no or few existing indicated drugs (or
drugs that are not present in public differential expression databases). Additionally, since
the master regulator approach is sensitive to complex metabolic network relationships, it is
(theoretically) more sensitive to patterns, as well as more suited to diseases with complex
genetic etiologies that are not explainable through observed gene counts alone.

Currently, the primary drawback to the master regulator approach is that criteria for
statistical significance are not well established. Therefore, it is challenging to determine
which venom–disease associations are most likely to reflect actual therapeutic efficacy.
As a temporary alternative, we used several heuristics to ensure that there are multiple
corroborating sources of evidence for the reported associations.

As discussed previously, the connectivity analysis produces hypotheses that are rela-
tively straightforward to validate experimentally, using affordable, widely available assay
kits and reagents. Since the master regulator workflow provides hypotheses at the disease
level (where the underlying molecular etiologies can be unknown), validation instead
needs to be performed at the phenotype level, either using animal models of disease or care-
fully engineered, cell-based phenotypic assays that measure response at multiple points in
disease-related metabolic pathways (e.g., DiscoverX’s BioMAP® platform [41]).

https://doi.org/10.6084/m9.figshare.7609793
https://doi.org/10.6084/m9.figshare.7609793
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2.9. Specific Therapeutic Hypotheses

VenomSeq leverages multiple modalities of data analysis for two reasons: (1) This
allows us to cover diseases with a wider array of molecular etiologies, and (2) it provides
a means for obtaining multiple pieces of corroborating evidence for a given hypothesis.
If a link between a venom and a drug/disease is suggested by both connectivity analysis
and master regulator analysis, and there is additional evidence in the literature that lends
biological or clinical plausibility, this increases our confidence that the suggested therapeutic
effect is robust.

Particularly regarding connectivity analysis and novel associations between venoms
and existing drugs, it is important to remember that these associations are based on
similarities in gene expression alone, which is a downstream cellular process that can result
from interactions at various points in upstream signaling cascades. Therefore, saying that a
venom’s effects on gene expression resemble those of a known PPAR agonist drug does
not necessarily imply that the venom is itself a PPAR agonist. Nonetheless, even if the
molecular mode of action is different, the therapeutic outcome may still be the same. For
this reason, VenomSeq’s approach has a significant advantage over other drug discovery
methods that focus solely on a prespecified molecular mode of action, which may have far-
reaching implications in an era where novel drugs are limited by the number of currently
known molecular targets (known as the ”druggable genome”) [42].

2.10. Transitioning from Venoms to Venom Components

VenomSeq is a technology for discovering early evidence that a venom has a certain
therapeutic effect. However, most successful approved drugs derived from venoms make
use of the activity of a single component within that venom, rather than the entire (crude)
venom. As previously mentioned, venoms can comprise hundreds of unique components,
each with a unique function and molecular target. Following this observation, we applied
the VenomSeq pipeline to nine purified peptides from snails in the family Terebridae to assess
whether VenomSeq can effectively produce differential expression profiles for individual
venom components. We describe the resulting expression profiles in Section 2.5 and
experimental methods in Section 4.3.

Of the nine teretoxins, five caused no significant changes in gene expression. This is
consistent with our expectations—marine snail venoms components tend to have highly
targeted modes of action, and any single cell line will respond to only some of the active
components in a venom. Of the remaining four teretoxin peptides, one—named Mki8.7,
from the venom of Myurella kilburni—produced a robust signature with 13 genes downreg-
ulated and 12 upregulated. We feel this merits further investigation, and typifies the type
of workflow we would like to see used with VenomSeq in the future: Both crude venoms
and individual venom components should be broadly screened for therapeutic effects,
and in diverse human cell lines. Since isolating venoms and purifying their individual
components is both laborious and expensive, a production-scale application of VenomSeq
will be a costly endeavor, but one with significant potential for improving human health.

Furthermore, although most existing venom-derived drugs consist of a single compo-
nent, crude venoms in nature use the synergistic effects of multiple components to cause
specific phenotypic effects [29]. Therefore, testing each venom component individually
using the VenomSeq workflow might fail to capture all of the clinically beneficial activities
demonstrated by the crude venom. A brute-force solution is to perform VenomSeq on all
combinations of the isolated venom components, but doing so requires a massive number
of experiments (2n − 1, where n is the number of components in the venom). Therefore, it
will be necessary to establish a protocol for prioritizing combinations of venom components.
One potential solution is to fractionate the venom (i.e., using gel filtration) and perform
VenomSeq on combinations of the fractions, but this will need to be tested. Alternatively,
integrative systems biology techniques could be used to predict which components act
synergistically, via similarity to structures with well-established activities.
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2.11. Applying the VenomSeq Framework to Other Natural Product Classes

VenomSeq was designed for the purpose of discovering therapeutic activities from
venoms, but it could be feasibly extended to other types of natural products, including
plant and bacterial metabolites and immunologic components. Venoms provide a number
of advantages and simplifying assumptions that were useful in designing the technology,
but a broader application of VenomSeq will enable the relaxation of these assumptions with
some minor modifications to experimental protocol and data analysis. For example, non-
venom toxins may have less-targeted MoAs, disrupting biological systems indiscriminately
(e.g., by interrupting cell membranes regardless of cell type). Additionally, the kinetics
of non-venom natural products may be more subtle than venoms, which tend to have
powerful binding and catalytic properties.

2.12. VenomSeq Technical Validation

Following the procedures described in Section 4.8, we used a secondary PLATE-Seq
dataset of 37 existing drugs (with known effects) tested on IMR-32 cells to assess whether
the sequencing technology (PLATE-Seq) and cell line (IMR-32) employed by VenomSeq are
compatible with connectivity analysis and the CMap reference dataset. In this dataset, 20 of
the 37 drugs have annotations to an existing CMap perturbational class (PCL). The drugs,
their modes of action, and the PCLs of which they are members are listed in Table 5. Using
these 20 drugs, we validated the performance of VenomSeq by demonstrating whether the
”true” PCL is assigned high connectivity scores both when using individual cell lines and
when integrating scores across all available cell lines, as described below.

Table 5. Drugs used to validate PLATE-Seq and the IMR-32 cell line for connectivity analysis. Not
all compounds of a given mechanism of action will necessarily map to that mechanism’s associated
PCL—PCLs consist of compounds that are members of the same functional class and also have high
transcriptional impact.

Drug Mechanism of Action CMap Perturbagen Class (PCL)

Mibefradil T-type Ca2+ channel inhibitor CP_T_TYPE_CALCIUM_CHANNEL_BLOCKER

Isradipine L-type Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER

Nifedipine L-type Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER

Diltiazem Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER

Verapamil Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER

Fendiline Ca2+ channel inhibitor CP_CALCIUM_CHANNEL_BLOCKER

Topiramate Na+ and Ca2+ channel modulator CP_SODIUM_CHANNEL_BLOCKER

Ionomycin Ca2+ channel signal inducer
1-EBIO Ca2+-gated K+ channel activator CP_POTASSIUM_CHANNEL_ACTIVATOR

Forskolin Adenylyl cyclase activator

Pregabalin Increases GABA biosynthesis
Gabapentin Increases GABA biosynthesis
Baclofen GABAB-receptor agonist

Memantine Glu-receptor inhibitor
Acamprostate Glu-receptor inhibitor CP_GABA_RECEPTOR_ANTAGONIST

MTEP Glu-receptor inhibitor
Ivermectin Glu-gated Cl− channel inhibitor

Carbenoxolone Glucocorticoid metabolism inhibitor
Mifepristone Glucocorticoid receptor inhibitor CP_PROGESTERONE_RECEPTOR_ANTAGONIST

Dexamethasone Glucocorticoid receptor agonist CP_GLUCOCORTICOID_RECEPTOR_AGONIST

Aldosterone Mineralocorticoid receptor agonist
Spironolactone Mineralocorticoid receptor inhibitor

Olanzapine Dopamine receptor inhibitor CP_DOPAMINE_RECEPTOR_ANTAGONIST

Eticlopride Dopamine receptor inhibitor CP_DOPAMINE_RECEPTOR_ANTAGONIST

Ondansetron 5-HT3 serotonin receptor inhibitor CP_SEROTONIN_RECEPTOR_AGONIST
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Table 5. Cont.

Drug Mechanism of Action CMap Perturbagen Class (PCL)

Naltrexone Opioid receptor inhibitor

Disulfiram Acetaldehyde dehydrogenase inhibitor

Cerlitinib ALK inhibitor
Crizotinib ALK inhibitor

Sirolimus mTOR inhibitor CP_MTOR_INHIBITOR

Manumycin A Farnesyltransferase inhibitor CP_NFKB_PATHWAY_INHIBITOR

Vorinostat HDAC (I/II/IV) inhibitor CP_HDAC_INHIBITOR

Prazosin Adrenergic receptor inhibitor CP_BETA_ADRENERGIC_RECEPTOR_AGONIST

Rolipram Phosphodiesterase-4 inhibitor

Minocycline NOS inhibitor
Pioglitazone PPARγ/α inhibitor CP_PPAR_RECEPTOR_AGONIST

Fenofibrate PPARα agonist CP_PPAR_RECEPTOR_AGONIST

2.12.1. VenomSeq Technical Validation: Recovering Connectivity by Integrating Cell Lines

When we aggregated all connectivity scores between a known drug and members of
the same PCL in the CMap dataset, irrespective of cell line, the connectivity scores were
significantly greater than those in a null model in 12 out of 20 instances, which indicates
that drugs within the same functional class tend to have more similarities in the query and
reference datasets than if the compounds are chosen at random. In all 20 cases, the average
effect size (effect size is defined as the average difference between connectivities within
the expected PCL and the null model of random connectivities for the same query) was
positive, regardless of statistical significance. These—and their corresponding measures of
significance—are shown in Figure 4 and Table 6. Overall, these data are congruent with
those made by the Connectivity Map team in [14]—namely, that expected connections
between query drugs and reference compounds can be recovered for some PCLs, but not
for others. Importantly, in both our observations and the observations in [14], PCLs related
to highly conserved core cellular functions perform better under this approach.

Table 6. Enrichment of strong connections in expected PCL annotations. p-values correspond to
independent, two-sample Student’s t-tests between “within-PCL” connectivities and a null model of
randomly sampled compound connectivities (see text) for the same query drug, and are corrected
for multiple testing using the Benjamini–Hochberg procedure. Bolded p-values indicate statistical
significance after correcting for multiple testing. Effect size is the difference in means between those
two groups, such that larger effect sizes correspond to higher expected connectivity scores between
the query drug and members of its same drug class. Note that effect sizes are relatively small in most
cases—this is due in part to the sparsity of connectivity scores.

Drug PCL p-Value Effect Size

Topiramate CP_SODIUM_CHANNEL_BLOCKER 1.018 × 10 −31 13.168
Vorinostat CP_HDAC_INHIBITOR 5.952 × 10 −22 1.717
Sirolimus CP_MTOR_INHIBITOR 2.240 × 10 −17 1.232
Eticlopride CP_DOPAMINE_RECEPTOR_ANTAGONIST 1.278 × 10 −11 4.175
Olanzapine CP_DOPAMINE_RECEPTOR_ANTAGONIST 8.117 × 10 −9 2.640
Fenofibrate CP_PPAR_RECEPTOR_AGONIST 1.012 × 10 −7 1.775
Pioglitazone CP_PPAR_RECEPTOR_AGONIST 1.158 × 10 −7 3.252
Manumycin a CP_NFKB_PATHWAY_INHIBITOR 4.124 × 10 −7 5.983
Dexamethasone CP_GLUCOCORTICOID_RECEPTOR_AGONIST 2.741 × 10 −6 2.462
Prazosin CP_BETA_ADRENERGIC_RECEPTOR_AGONIST 2.476 × 10 −2 2.083
Acamprosate CP_GABA_RECEPTOR_ANTAGONIST 4.290 × 10 −2 2.260
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Table 6. Cont.

Drug PCL p-Value Effect Size

Mibefradil CP_T_TYPE_CALCIUM_CHANNEL_BLOCKER 6.871 × 10 −2 0.355
1-EBIO CP_POTASSIUM_CHANNEL_ACTIVATOR 2.573 × 10 −1 2.597
Fendiline CP_CALCIUM_CHANNEL_BLOCKER 2.854 × 10 −1 2.636
Diltiazem CP_CALCIUM_CHANNEL_BLOCKER 2.929 × 10 −1 5.719
Isradipine CP_CALCIUM_CHANNEL_BLOCKER 4.062 × 10 −1 0.683
Nifedipine CP_CALCIUM_CHANNEL_BLOCKER 4.100 × 10 −1 1.932
Mifepristone CP_PROGESTERONE_RECEPTOR_ANTAGONIST 4.309 × 10 −1 3.160
Verapamil CP_CALCIUM_CHANNEL_BLOCKER 5.404 × 10 −1 5.880
Ondansetron CP_SEROTONIN_RECEPTOR_AGONIST 5.710 × 10 −1 2.659

VenomSeq data Validation data CMap reference data

Technology PLATE-Seq PLATE-Seq L1000

Measurement type Gene counts Gene counts Gene relative abundance

Human cell line(s) IMR-32 IMR-32 9 core cell lines

Exposure 

compounds

25 crude venoms 37 small molecule 

drugs

19,811 small molecule 

compounds

E ects known No Yes Some

Drug class 

annotations

None CMap perturbagen 

classes (“PCLs”)

CMap perturbagen 

classes (“PCLs”)

(a) (b)

(c)

(d)

Figure 4. Results of applying the VenomSeq sequencing and connectivity analysis workflow to
37 existing drugs with known effects to validate the compatibility of PLATE-Seq and IMR-32 cells
with the connectivity analysis algorithm and dataset. (a) Scatter plot showing validation drugs that
are members of a CMap PCL and the mean differences between within-PCL connectivity scores and
a null distribution of random connectivity scores for the same drug (Table 6). Vertical axis shows
the p-value of a Student’s t-test comparing the within-PCL and null connectivity score distributions
(corrected for multiple testing). Statistically significant drugs are labeled by name. (b) Summary
of the validation strategy, showing that the validation dataset bridges certain gaps between the
VenomSeq data and the CMap reference data. (c) Distributions of rank percentiles of expected (“true”)
PCLs within the list of all PCLs ordered by average connectivity score (Table 7), aggregated by CMap
dataset cell lines, and (d) validation drugs. Green distributions indicate a shift towards the front
of the rank-ordered list, indicating stronger compatibility with the PLATE-Seq/IMR-32 query data,
based on expected connections, and “*” indicates statistically significant shifts.
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Table 7. Correct PCL ranks aggregated by cell line. Mean rank percentile is the mean rank of the
correct (“true”) PCL, aggregated over all query drugs and divided by the total number of PCLs (92),
reported by cell line.

CMap Cell Line Mean Rank Percentile FDR-Corrected p-Value

HA1E 0.326087 0.001663
A375 0.375000 0.004926
PC3 0.431522 0.109226
HCC515 0.446739 0.193877
HEPG2 0.461957 0.258068
MCF7 0.465217 0.279325
VCAP 0.492935 0.443995
A549 0.503804 0.468387
HT29 0.075445 0.591304

2.12.2. VenomSeq Technical Validation: Impact of Reference Cell Lines and Query Drugs on
Expected PCL Percentile Ranks

Since IMR-32 cells are not present in the CMap reference dataset, we were particularly
interested in seeing which cell lines present in the reference dataset (if any) performed
better than others at the task of recovering expected connections. Using the PCL ranking
strategy described in Section 4.8, we found that seven of the nine core cell lines show at
least a moderate tendency to place the true PCL towards the front of the ranked list of
all PCLs, indicating that at least some of the ability to recover expected connections is
retained when looking at those seven cell lines individually. PCL rankings stratified by
drug (rather than cell line) show a similar pattern. In total, 15 of 20 PCL-annotated drugs
tend to have the expected PCL ranked towards the front of the list (“enrichment”), while
5 tend to have the expected PCL show up towards the back of the list (“depletion”). It
should be noted that—due to the rather small number of profiles in the reference dataset
that are annotated to PCLs—these two analyses were limited in terms of statistical power,
and deserve a follow-up analysis in the future, when more PCLs and members of those
PCLs are present in the reference database.

2.12.3. VenomSeq Technical Validation: Interpreting Connectivity Analysis
Validation Results

In Section 2.12, we described the results of the connectivity analysis procedure applied
to PLATE-Seq expression data from IMR-32 cells treated with 37 existing drugs that have
known effects, many of which are members of Connectivity Map PCLs. Since VenomSeq

uses an expression analysis technology that is different from the Connectivity Map’s L1000
platform, as well as a cell line that is not present in the Connectivity Map reference dataset,
this is crucial for establishing that one can discover meaningful associations between crude
venoms and profiles in the reference data within the VenomSeq framework.

Overall, the findings of our analysis are congruent with those made by the Connectivity
Map team in [14]. Specifically, PCLs that affect highly conserved, core cellular functions
(such as HDAC inhibitors, mTOR inhibitors, and PPAR receptors) tend to form strong
connectivities with members of the same class regardless of cell line. Therefore, associations
discovered between crude venoms and these drug classes are likely “true associations”,
even when using IMR-32 cells in the analysis. Furthermore, by virtue of leveraging data
corresponding to drugs with known effects, but using a new cell line and different assay
technology, we have made the following novel findings:

Although IMR-32 is not present in the reference dataset, similarities between IMR-32
and cell lines that are present in the reference data can be leveraged to select reference
expression profiles that are more likely to reproduce true associations. For example, HA1E
and A375 cells produce expression profiles that form reasonably strong connectivities
between IMR-32 query signatures and members of the same drug classes. More cell
lines need to be included in the Connectivity Map data in order to better understand
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correlation structures in cell-specific expression, as well as to better capture therapeutic
associations that are specific to cell types underrepresented in current datasets. It should
also be noted that the nature of IMR-32 as an oncogenic cell line could contribute to false
negatives or false positives in VenomSeq’s predicted associations, due to the disruption of
certain key regulatory pathways, although it could also make the results more sensitive
to therapeutic activities relating to cancer. Similarly, continued effort should be devoted
to adding new PCL annotations. Currently, only 12.3% of compound signatures in the
reference dataset are annotated to at least one PCL, and some PCLs contain only a few
signatures. A more rigorous definition of what specifically comprises a PCL would allow
secondary research groups to contribute to this effort, ultimately improving the utility
of the CMap data and increasing the sensitivity of the algorithms used to discover new
putative therapeutic associations.

In spite of the large amount of corroborating evidence these results provide (e.g.,
every drug in our validation set produced a positive average effect on within-PCL con-
nectivities versus corresponding null distributions), we cannot definitively state whether
the associations discovered for crude venoms reflect real therapeutic activities. Although
our confidence in the novel associations would be improved by more PCL annotations to
allow our analyses to attain greater statistical power, the ultimate test is to perform in vitro
(and eventually in vivo) tests on individual venom components to detect these predicted
therapeutic mechanisms of action. Initial cellular and protein-based assays suggest that
the associations we found are real, but the toxicity of the crude venoms damages cells and
membranes before the experiments can be run to completion. Aside from larger quantities
of reference data against which to run the validation analyses, we also hope to employ
other data science techniques involving network analysis and more advanced applications
of master regulator analysis (see, e.g., Section 2.6) to further understand the dynamic
interactions between cell types, gene expression, and perturbational signals that underlie
therapeutic processes.

2.13. Accessing and Querying VenomSeq data

VenomSeq is designed as a general and extensible platform for drug discovery, and
we encourage the secondary use of both the technology as well as the data produced
using the 25 venoms and 11 synthesized teretoxins tested on IMR-32 cells described in
this manuscript. We maintain the data in two publicly accessible locations: (1) a “frozen”
copy of the data, as it exists at the time of writing (on figshare, at https://doi.org/10.608
4/m9.figshare.7611662) (accessed on 6 July 2023), and (2) a copy hosted on venomkb.org
(accessed on 6 July 2023), available both graphically and programmatically, and designed
to be expanded as new data and features are added to VenomKB.

3. Conclusions

Venoms provide an immensely valuable opportunity for drug discovery, but the
enormous quantity and variety of compounds found in each venom arsenal requires a
revision of the techniques used for identifying new therapeutic leads from venom natural
products. Traditional methods—involving rigorous experimental validation and high cost—
are necessary for validating associations between venoms and their respective therapeutic
effects in living systems. However, data-driven computational approaches can make this
process easier by generating new hypotheses backed by existing evidence and multiple
levels of statistical validation. VenomSeq is an early example of such an approach.

VenomSeq takes a two-pronged approach, combining connectivity analysis and master
regulator analysis to provide two orthogonal views of the effects venoms have on human
cells, where likely therapeutic effects are validated using publicly available knowledge rep-
resentations and databases. In this study, we tested the VenomSeq workflow on 25 diverse
venoms and 9 purified terebrid venom components applied to human IMR-32 cells, and
discovered a number of new therapeutic hypotheses supported by the existing literature
evidence. In the overall scope of drug discovery from venoms, VenomSeq represents a

https://doi.org/10.6084/m9.figshare.7611662
https://doi.org/10.6084/m9.figshare.7611662
venomkb.org
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scalable, generalizable, and novel technology for identifying lead compounds for subse-
quent experimental validation. As demonstrated above, it enables the discovery of new
knowledge about venoms that are already well characterized, as well as for venoms about
which relatively little is known. Since hypotheses are based on comparisons to existing
drugs and diseases, the outcome is readily interpretable and can be applied to other classes
of toxins or natural products.

To reinforce the validity of the hypotheses found through VenomSeq, future work is
merited in applying the pipeline to new venoms and new human cell lines, and to test
the pipeline on additional venoms, venom fractions, and isolated venom components
with well-understood therapeutic modes of action. To fully bring a venom-based drug to
market, it will also be necessary to experimentally validate the predictions (e.g., via both
in vitro and animal-model-based approaches), optimize the compound for both stability
and delivery, and progress through clinical trials to establish safety and efficacy. Although
VenomSeq currently only addresses the portion of this pipeline involved in discovering
new lead compounds, its extensibility represents an important step forward in venom-
derived therapeutics.

4. Materials and Methods

4.1. Reagents and Materials

We performed growth inhibition assays and perturbation experiments using IMR-32
cells—an adherent, metastatic neuroblastoma cell line used in previous applications of
PLATE-Seq and VIPER—grown in FBS-supplemented Eagle’s Minimum Essential Medium
(EMEM). Our use of the IMR-32 cell line is based on the fact that it is currently the only
cell line compatible with the PLATE-Seq technology, as well as the availability of high-
resolution regulatory network data that facilitate analysis using the VIPER algorithm
(see Section 2.6). All venoms were provided in lyophilized form and stored at −20 ◦C.
Since venoms naturally exist in aqueous solution, we reconstituted them in ddH2O at
ambient temperature.

4.2. Obtaining 25 Venoms

VenomSeq is designed to apply to all venomous species across all taxonomic clades.
Accordingly, we validated the workflow using 25 venoms sampled from a diverse range
of species distributed across the tree of life. We selected the 25 species based on avail-
ability and compliance with international law, and sought to balance maximal cladistic
diversity with minimal expected cytotoxicity (e.g., snakes in the genus Bitis are known for
inducing tissue death and necrosis, and are therefore challenging to use for drug discovery
applications [43]). We purchased the 25 venoms from Alpha Biotoxine in lyophilized form
and obtained prior approval from the US Centers for Disease Control (CDC) through the
Federal Select Agent Program [44] for importing venoms containing α-conotoxins. Gener-
ally, we sought to obtain 2–5 species each of snakes, spiders, scorpions, other arthropods,
fish, amphibians, and mollusks. Due to the prevalence and ease of use of snake venoms,
our final list includes 6 snakes. Other groups were selected largely based on commercial
availability at the time of the study. The 25 venoms we selected are listed in Table 8. Note
that we assigned a numeric identifier to each venom for convenience—these numbers show
up numerous places in the data for VenomSeq. We also provide an evolutionary tree of the
25 species in Figure A1.
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Table 8. The 25 venoms used to validate the VenomSeq workflow. Numbers in the right column are
used as placeholder names for the venoms in data files.

Species Name Common Name Venom Number

Naja nivea Cape cobra 1
Laticauda colubrina Banded sea krait 2
Montivipera xanthina Ottoman viper 3
Dendroaspis polylepis polylepis Black mamba 4
Crotalus scutulatus scutulatus Mojave rattlesnake 5
Atractaspis sp. Burrowing asp 6

Macrothele gigas Japanese funnel web spider 7
Linothele fallax Tiger spider 8
Poecilotheria fasciata Sri Lanka ornamental spider 9
Argiope lobata - 10

Synanceia verrucosa Reef stonefish 11
Synanceia horrida Estuarine stonefish 12

Buthus occitanus Common yellow scorpion 13
Leiurus quinquestriatus Deathstalker 14
Scorpio maurus Large-clawed scorpion 15

Bufo bufo Common toad 16
Rhinella marina Cane toad 17
Bombina variegata Yellow-bellied toad 18

Apis mellifera Western honey bee 19
Vespa crabro European hornet 20
Scolopendra subspinipes dehaani Vietnamese centipede 21

Conus marmoreus Marbled cone snail 22
Conus imperialis Imperial cone snail 23
Octopus macropus Atlantic white-spotted octopus 24
Pterois volitans Red lionfish 25

4.3. Obtaining 9 Purified Teretoxins

To assess the performance of VenomSeq on individual venom components, we selected
9 teretoxins from an in-house library of peptide sequences isolated from snails in the Tere-
bridæfamily and synthesized purified samples using a method described previously [45].

4.4. Growth Inhibition Assays

A major challenge in generating differential gene expression data for discovery pur-
poses is finding appropriate dosages for the compounds being tested. This is carried out
to ensure the compound is in sufficient concentration to be exerting an observable effect
on the cells, while also mitigating processes that result from toxicity (e.g., apoptosis). In
practice, determining an appropriate dosage concentration usually makes use of previous
experimental evidence and/or biochemical constants, but since these are generally not
available for crude venoms, we instead determined dosages based on growth inhibition.

We prepared 2-fold serial dilutions of each venom, starting from 2.0 mg µL−1. We
seeded 96-well plates with IMR-32 cells and exposed them to the serial dilutions of the
venoms after 24 h of incubation. Then, 48 h after exposure, we quantified the growth
inhibition of the IMR-32 cells via cell viability luminescence assays.

For each venom, we fit these data to the Hill equation:

y = Bottom +
(Top − Bottom)

1 + 10(log GI50−x)×h

where x is venom concentration, y is response (i.e., percent growth compared to untreated
cells), Top and Bottom are the maximum and minimum values of y, respectively, and h
is a constant that controls the shape of the sigmoidal curve. We used the resulting GI20
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values (i.e., the value of x such that y = 100% − 20% = 80%) as the venom exposure
concentrations for the following sequencing experiments. We chose the GI20 metric based
on previous experience in high-throughput screening studies when mechanistically based
optimal dosages are not available—20% of growth inhibition tends to be a point at which
the compound is noticeably exerting an effect on the cell, without gene expression being
obscured by cell death or toxic processes. Since some of the curves had very steep slopes
(indicating rapid loss of total cell viability after minuscule changes in venom concentration),
we confirmed the accuracy of the GI20 concentrations via secondary viability assays using
the exact GI20 values extrapolated from the growth inhibition curves.

4.5. mRNA Sequencing

We prepared samples of human IMR-32 cells in 96-well cell culture plates, allowing
for 3 replicates at each of 3 time points (6, 24, and 36 h post-treatment) for each of the
25 venoms. The layout of the samples across two 96-well plates is available in Appendix B.
We reconstituted the crude venoms in water and treated the samples with corresponding
venoms at the previously determined GI20 values. We additionally prepared 12 control
samples treated with water only and 9 control samples that were untreated. All samples
for a venom were prepared from the same initial crude venom stock but incubated and
processed individually prior to sequencing. To minimize the effect of microenvironments
within the 96-well plate, samples for the same venom and time points were tiled across
different regions of the plate. Following total mRNA extraction, we carried out the PLATE-
Seq protocol [46] to obtain gene counts for each sample. All sequencing was performed
on the Illumina HiSeq platform. We used STAR [47] to (1) map the demultiplexed, paired-
end reads to the human genome (build GRCh38 [48], 3.1 Gb in length) and (2) count
the reads uniquely mapping to known genes (e.g., when the maximum alignment score
among alignments mapping to the correct strand is associated with a single gene). Complete
details on the sequencing protocol are provided in the original PLATE-Seq publication [46]—
deviations from the original protocol include the human genome assembly used (hg38
instead of hg19) and the aligner software used (STAR instead of bwa-mem). We used
raw numbers of uniquely mapping counts to quantify the expression of each gene, as is
appropriate for downstream analysis with the DESeq2 softare. For detailed quality control
data for the sequencing experiments, refer to Appendix B.

4.6. Constructing Expression Signatures

We constructed differential gene expression signatures using the DESeq2 [49] library
for the R programming language. DESeq2 fits observed counts for each gene to a negative
binomial distribution with mean µij and dispersion (variance) αi, which we find to be a
more robust model than traditional approaches based on the Poisson distribution (i.e.,
by allowing for unequal means and dispersions). In practice, users can substitute any
method for determining significantly up- and downregulated genes from count data. We
filtered for genes with an FDR-corrected p-value < 0.05 and recorded their respective mean
log2-fold change values, noting whether expression increased (upregulated) or decreased
(downregulated).

4.7. Comparing Venoms to Known Drugs and Diseases

Our overall procedure for comparing venoms to known drugs and diseases based
on differential expression signatures is shown in Figure 5, and described below in further
detail.
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Find connectivities to CMap data Assess overabundant PCLs

Find enriched master regulators Match data to DisGeNET

Connectivity analysis

Master regulator analysis

msVIPER
algorithm

Cell regulatory
network

Disregulated TFs

Enrichment analysis

25 signatures

25 signatures Connectivity
scores (raw)

CMap data

Tau scores

Normalize and
find quantiles

List of
disregulated TFs Venom/disease

associations

Disease/TF
associations

Venom 1:

PCL1; +
PCL2; -
PCL3; ++

…

Enrichment analysis

Drug class 

associations

Functional
classes (PCLs)

Figure 5. Strategy for discovering new associations from VenomSeq data. After obtaining processed
gene counts per sample, we generated differential expression signatures for each venom and then
used the signatures in two parallel analyses: connectivity analysis and master regulator analysis.

4.7.1. Comparing to Known Drugs Using the Connectivity Map

We retrieved the most recently published Connectivity Map dataset from the Clue.io
Data Library (GSE92742), which contains 473,647 perturbational signatures, each consist-
ing of robust Z-scores for 12,328 genes, along with relevant metadata. We then used the
procedure described by the Connectivity Map team [14] to generate connectivity scores
between each of the VenomSeq gene expression signatures and each of the reference expres-
sion profiles in the Connectivity Map database. This procedure, adapted for VenomSeq, is
summarized below.

Let a query qi be the two lists of up- and downregulated genes corresponding to the
differential expression signature for venom i, and rj ∈ R be a vector of gene-wise Z-scores
in reference expression signature j. We first generate a Weighted Connectivity Score (WCS)
w between qi and

rj:

wqr =

{

(ES
q,r
up − ES

q,r
down)/2 if sgn(ES

q,r
up) 6= sgn(ES

q,r
down)

0 otherwise

where sgn denotes the sign function d
dx |x|, and ES

qr
· is the signed enrichment score for

either the up- or downregulated genes in the signature, calculated separately (see below
for details).

Although we validated VenomSeq on only a single human cell line, the reference
database provided by the Connectivity Map provides expression profiles on 9 core cell lines
across multiple classes of perturbagens. Therefore, we compute normalized versions of
WCS called Normalized Connectivity Scores (NCSs):

NCSq,r =

{

wq,r/µ
+
c,t if sgn(wq,r) > 0

wq,r/µ
−
c,t otherwise

where µ
+
c,t and µ

−
c,t are the means of all positive or negative WCSs (respectively) for the

given cell line and perturbagen type.
The final step in computing connectivity scores between a venom q and a reference r

is to convert NCSq,r into a value named τ, which represents the signed quantile score in
the context of all positive or negative NCSs:
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τq,r = sgn(NCSq,r)
100
N

N

∑
i=1

[

|NCSi,r| < |NCSi,r|
]

where N is the number of all expression signatures in the reference database and |NCS| is
the absolute magnitude of an NCS.

Enrichment Score Computation

For a venom q and reference expression signature r, the enrichment score ES
qr
· is a

signed Kolmogorov–Smirnov-like statistic indicating whether the subset of up- or down-
regulated genes in q tend to occur towards the beginning or the end of a list of all genes
ranked by expression level in r. We follow a procedure similar to that described by Lamb
et al. in [12]. Specifically, we compute the following two values:

a =
t

max
j=1

[

j

t
−

Vqr(j)

n

]

b =
t

max
j=1

[

Vqr(j)

n
−

(j − 1)
t

]

where Vqr is the vector of non-negative integers that provides the indices of the genes in
q within the list of all genes ordered corresponding to their assumed values in r, t is the
number of genes in q, and n is the number of genes reported in the reference database (in
practice, t ≪ n). We then set ES as follows:

ES
qr
· =

{

a if a > b
−b if a < b

Since each query q consists of two lists—one of upregulated and one of downregulated
genes—we compute both ES

qr
up and ES

qr
down, respectively, and use these two values to

compute wqr, as described above.

4.7.2. Comparing to Known Diseases Using Master Regulator Analysis

We discovered associations between the venom expression profiles and known dis-
eases (coded as UMLS concept IDs) as the result of two sequential steps: (1) algorithmic
determination of substantially perturbed cell regulatory modules (called regulons), and
(2) mapping master regulators to diseases using high-confidence associations distributed
in the DisGeNET database. These took as input the same differential expression data used
in the connectivity analysis. IMR-32 regulon data (in the form of an adjacency matrix,
where nodes are genes and edges are measures of mutual information with respect to their
coexpression) were provided by the authors of the ARACNe algorithm.

In order to identify perturbed regulons, we first performed a 2-tailed Student’s t-
test between the genes’ expression in the ”test” set (samples perturbed by venoms) and
the ”reference” set (control samples). To make the final expression signatures, we then
converted the results of the t-tests to Z-scores, to make them consistent with the models
used by downstream algorithms. We generated null scores by performing the same test
on the expression data with permuted sample labels, to account for correlation structures
between genes. Once we had computed Z-scores, we ran the msVIPER algorithm, which
derives enrichment statistics for each regulon based on the expression levels of the genes
contained in the regulon. The result of msVIPER is a table of regulons (labeled by their
master regulator), with enrichment scores, p-values, and FDR-corrected adjusted p-values.

We then compared the significantly upregulated regulons to the manually curated subset
of TF–disease associations from the DisGeNET database. To do so, we mapped the statistically
significant master regulator TFs for each venom to TFs reported in DisGeNET, and then mapped
those TFs to their associated diseases. To help with filtering venom–disease associations with
low evidence, we only retained diseases where at least two of the regulons that were significantly
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dysregulated by the venom were associated with the same disease. Accordingly, we considered
diseases with the highest number of significantly dysregulated master regulators to comprise
the associations with the greatest amount of evidence.

Similarly to how we mapped drugs to drug classes, we mapped diseases to disease
categories. To do so, we identified the set of ICD-9 codes for each disease, based on
the diseases’ entries in the UMLS (UMLS CUIs were provided by DisGeNET). We then
identified the disease category as the top-level ICD-9 “chapter” corresponding to that
ICD-9 code (e.g., NEOPLASMS, MENTAL DISORDERS, DISEASES OF THE RESPIRATORY SYSTEM,
etc.). In rare instances where a disease or condition was present in two locations (e.g.,
”hypertension” is found in 2 chapters: DISEASES OF THE CIRCULATORY SYSTEM (401) and
INJURY AND POISONING (997.91)), we opted for the more specific of the two (e.g., avoiding
entries containing “not elsewhere classified”).

4.8. Assessing Sequencing Technology and Cell Type Compatibility

Since VenomSeq uses a sequencing technology (PLATE-Seq) and a cell line (IMR-32)
that have not been used previously with the connectivity analysis approach, we evaluated
their compatibility using a secondary dataset consisting of IMR-32 cells perturbed with
37 drugs and sequenced using PLATE-Seq. Since these drugs have known effects—and
since many are present in the L1000 reference dataset—we sought to determine the extent
to which connectivity analysis captures functional similarities between these drug data and
the L1000 reference expression profiles. The 37 drugs are listed in Table 5. For the purposes
of this discussion, a “query signature” is an expression signature corresponding to one
of the 37 drugs in the validation dataset, and a “reference profile” is an L1000 expression
profile from the dataset (GSE92742) published by the Connectivity Map team and used in
the crude venom connectivity analysis.

Using these data (consisting of gene count matrices with several technical replicates
per drug), we constructed differential expression signatures and performed the connec-
tivity analysis algorithm in the same manner as we had for IMR-32 cells exposed to the
25 crude venoms. We annotated each of the 37 drugs (where possible) with perturbagen
classes (PCLs) defined by the Connectivity Map team, which allowed us to identify L1000
expression profiles that come from the same drug classes as the drugs in our validation
dataset. We then evaluated connectivity scores among members of the same PCL from
two perspectives: (1) By aggregating all τ scores for reference profiles corresponding to a
given compound, integrating evidence from all cell lines, and (2) by aggregating τ scores
within individual cell lines, allowing us to assess the degrees to which specific cell lines are
compatible with IMR-32/PLATE-Seq query signatures.

For the first of these two approaches, we collected all values of τ connecting query
signatures in a PCL to reference profiles in the same PCL, and constructed null models
by retrieving τ scores between the same query signature and all reference profiles that
are members of any PCL. We defined the “effect size” of each PCL annotation as the
difference in the mean of the scores within the true PCL and the mean of the scores in
the null model. Additionally, we determined statistical significance using independent
two-sample Student’s t-tests. To correct for multiple testing, we adjusted p-values using
the Benjamini–Hochberg procedure (α = 0.05).

For the second approach—in which we evaluated each of the 9 core L1000 cell lines
separately for each query signature—we retrieved τ scores between query signatures and
each of the 92 PCLs in the reference dataset. Then, for each of the 9 cell lines and each of
the query signatures annotated to a PCL, we constructed ordered lists of all PCLs ranked
by their mean τ score in descending order (highest to lowest connectivity). In each of those
lists, we determined the rank corresponding to the expected (“true”) PCL—which we call
the rank percentiles—and aggregated these ranks separately by (a) the drug corresponding
to the query signature and (b) cell line of the reference profile. These two strategies allow
us to separately assess the effects of drugs and cell lines on the behavior of connectivity
scores. Under the null hypothesis that there is no selective preference for the true PCL
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in the connectivity data, the mean rank percentiles would follow a continuous uniform
distribution in the range [0, 1]. Alternatively, if there is a selective preference for the
expected PCL in the connectivity data, this rank will tend to occur towards the front of the
list of ranks (and vice versa).
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Appendix A. Tree of Species Used in VenomSeq Crude Venom Experiments
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Figure A1. Evolutionary tree showing the 25 species used in VenomSeq, derived from accepted taxo-
nomic nomenclature and intended to highlight the diversity of the 25 species. Clades corresponding
to major taxonomic groups are labeled as indicated.

Appendix B. PLATE-Seq Quality Control Data

Table A1. Layout of samples in two 96-well plates for PLATE-Seq.

Plate 1:

Well Venom Conc. (uG/uL) Time (H)

A1 1 0.0086132 6
B1 2 2 6
C1 3 0.0019328 6
D1 4 2 6
E1 5 0.0015728 6
F1 6 0.0079436 6
G1 7 0.0036492 6
H1 8 0.12465 6
A2 9 0.5319 6
B2 10 1.0854 6
C2 11 2 6
D2 12 2 6
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Table A1. Cont.

Plate 1:

Well Venom Conc. (uG/uL) Time (H)

E2 13 0.75436 6
F2 14 0.94907 6
G2 15 0.092597 6
H2 16 0.00017756 6
A3 17 0.00016248 6
B3 18 0.15788 6
C3 19 0.024247 6
D3 20 0.83819 6
E3 21 0.0081806 6
F3 22 2 6
G3 23 0.70971 6
H3 24 2 6
A4 25 2 6
B4 Water - 6
C4 Water - 6
D4 Water - 6
E4 Water - 6
F4 Untreated - 6
G4 Untreated - 6
H4 Untreated - 6
A5 1 0.0086132 24
B5 2 2 24
C5 3 0.0019328 24
D5 4 2 24
E5 5 0.0015728 24
F5 6 0.0079436 24
G5 7 0.0036492 24
H5 8 0.12465 24
A6 9 0.5319 24
B6 10 1.0854 24
C6 11 2 24
D6 12 2 24
E6 13 0.75436 24
F6 14 0.94907 24
G6 15 0.092597 24
H6 16 0.00017756 24
A7 17 0.00016248 24
B7 18 0.15788 24
C7 19 0.024247 24
D7 20 0.83819 24
E7 21 0.0081806 24
F7 22 2 24
G7 23 0.70971 24
H7 24 2 24
A8 25 2 24
B8 Water - 24
C8 Water - 24
D8 Water - 24
E8 Water - 24
F8 Untreated - 24
G8 Untreated - 24
H8 Untreated - 24
A9 1 0.0086132 36
B9 2 2 36
C9 3 0.0019328 36
D9 4 2 36
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Table A1. Cont.

Plate 1:

Well Venom Conc. (uG/uL) Time (H)

E9 5 0.0015728 36
F9 6 0.0079436 36
G9 7 0.0036492 36
H9 8 0.12465 36
A10 9 0.5319 36
B10 10 1.0854 36
C10 11 2 36
D10 12 2 36
E10 13 0.75436 36
F10 14 0.94907 36
G10 15 0.092597 36
H10 16 0.00017756 36
A11 17 0.00016248 36
B11 18 0.15788 36
C11 19 0.024247 36
D11 20 0.83819 36
E11 21 0.0081806 36
F11 22 2 36
G11 23 0.70971 36
H11 24 2 36
A12 25 2 36
B12 Water - 36
C12 Water - 36
D12 Water - 36
E12 Water - 36
F12 Untreated - 36
G12 Untreated - 36
H12 Untreated - 36

Plate 2:

Well Venom Conc. (uG/uL) Time (H)

A1 1 0.0086132 6
B1 2 2 6
C1 3 0.0019328 6
D1 4 2 6
E1 5 0.0015728 6
F1 6 0.0079436 6
G1 7 0.0036492 6
H1 8 0.12465 6
A2 9 0.5319 6
B2 10 1.0854 6
C2 11 2 6
D2 12 2 6
E2 13 0.75436 6
F2 14 0.94907 6
G2 15 0.092597 6
H2 16 0.00017756 6
A3 17 0.00016248 6
B3 18 0.15788 6
C3 19 0.024247 6
D3 20 0.83819 6
E3 21 0.0081806 6
F3 22 2 6
G3 23 0.70971 6
H3 24 2 6
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Table A1. Cont.

Plate 2:

Well Venom Conc. (uG/uL) Time (H)

A4 25 2 6
B4 Water - 6
C4 Water - 6
D4 Water - 6
E4 Water - 6
F4 Untreated - 6
G4 Untreated - 6
H4 Untreated - 6
A5 1 0.0086132 24
B5 2 2 24
C5 3 0.0019328 24
D5 4 2 24
E5 5 0.0015728 24
F5 6 0.0079436 24
G5 7 0.0036492 24
H5 8 0.12465 24
A6 9 0.5319 24
B6 10 1.0854 24
C6 11 2 24
D6 12 2 24
E6 13 0.75436 24
F6 14 0.94907 24
G6 15 0.092597 24
H6 16 0.00017756 24
A7 17 0.00016248 24
B7 18 0.15788 24
C7 19 0.024247 24
D7 20 0.83819 24
E7 21 0.0081806 24
F7 22 2 24
G7 23 0.70971 24
H7 24 2 24
A8 25 2 24
B8 Water - 24
C8 Water - 24
D8 Water - 24
E8 Water - 24
F8 Untreated - 24
G8 Untreated - 24
H8 Untreated - 24
A9 1 0.0086132 36
B9 2 2 36
C9 3 0.0019328 36
D9 4 2 36
E9 5 0.0015728 36
F9 6 0.0079436 36
G9 7 0.0036492 36
H9 8 0.12465 36
A10 9 0.5319 36
B10 10 1.0854 36
C10 11 2 36
D10 12 2 36
E10 13 0.75436 36
F10 14 0.94907 36
G10 15 0.092597 36
H10 16 0.00017756 36
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Table A1. Cont.

Plate 2:

Well Venom Conc. (uG/uL) Time (H)

A11 17 0.00016248 36
B11 18 0.15788 36
C11 19 0.024247 36
D11 20 0.83819 36
E11 21 0.0081806 36
F11 22 2 36
G11 23 0.70971 36
H11 24 2 36
A12 25 2 36
B12 Water - 36
C12 Water - 36
D12 Water - 36
E12 Water - 36
F12 Untreated - 36
G12 Untreated - 36
H12 Untreated - 36
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Figure A2. Quality control plots. (a) Number of detected genes (mapped reads ≥ 2) as a function
of the total number of mapped reads per sample. (b) Saturation analysis by in silico subsampling.
Original data points are indicated by the black dots.
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Figure A5. Detected genes and spike-ins. (a) Association between the number of mapped reads
and detected genes for each of the 96 analyzed samples. (b) Heatmap showing the number of reads
(thousands) mapping to spike-ins for each of the samples.

Appendix C. Mechanism Diagrams

The following mechanisms—from the Reactome web resource—describe the molecular
functions for ATPase inhibitor and FGFR inhibitor drugs, which have similar effects on
global gene expression as A. lobata and S. maurus venom, respectively (see Section 2.9).

[h]

Figure A6. Structure of digoxin (left), a cardiac glycoside that inhibits the function of the Na+/K+
ATPase (ATP1A; right) in the myocardium, which causes a decrease in heart rate [50]. A. lobata

venom has similar differential expression effects to those of digoxin and other ATPase inhibitor drugs,
based on connectivity analysis. Diagram from Reactome [51].
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Figure A7. Diagram of FGFR signaling pathways. FGFR inhibitors target 1 of the 4 types of FGFR
complexes, abnormal activity of which are involved in angiogenesis. VenomSeq suggests therapeutic
similarity between S. maurus venom and existing FGFR inhibitor drugs. Pathway diagram from
Reactome [52].
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